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We consider a generic two-dimensional system of fermionic particles with attractive interactions and no
disorder. If time reversal symmetry is absent, it is possible to obtain incompressible insulating states in addition
to the superfluid at zero temperature. The superfluid-insulator phase transition is found to be second order in
type-1I systems using a perturbative analysis of Cooper pairing instability in quantum Hall states of unpaired
fermions. We obtain the pairing phase diagram as a function of chemical potential (density) and temperature.
However, a more careful analysis presented here reveals that the pairing quantum phase transition is always
preempted by another transition into a strongly correlated normal state which retains Cooper pairing and cannot
be smoothly connected to the quantum Hall state of unpaired fermions. Such a normal phase can be qualita-
tively viewed as a liquid of vortices, although it may acquire conventional broken symmetries. Even if it did
not survive at finite temperatures its influence would be felt through strong quantum fluctuations below a
crossover temperature scale. These conclusions directly apply to fermionic ultracold-atom systems near uni-
tarity, but are likely relevant for the properties of other strongly correlated superfluids as well, including

high-temperature superconductors.
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I. INTRODUCTION

Many years of efforts to understand the strongly corre-
lated phases of cuprate superconductors and other unconven-
tional materials have resulted in a variety of new conceptual
ideas. One broadly accepted idea is that the destruction of
two-dimensional superconductivity in underdoped cuprates
involves strong fluctuations of the order parameter instead of
Cooper pair dissociation.! The remarkable theoretical insight
gained from duality transformations in several systems>?
stimulates viewing this phase transition as a proliferation of
vortices. The normal state may be envisioned as a liquid of
mobile vortex loops. Indeed, there are several experimental
observations that support this view*> and several theories
that exploit it®7 to successfully explain certain unconven-
tional properties of cuprates.’-12

Nevertheless, the notion of a vortex liquid is not a trivial
one. It is not even clear yet whether any correlated state of
any known material truly deserves to be called a vortex lig-
uid. In particular, the vortex liquid regime found in the
pseudogap region in cuprates seems to be separated from the
high-temperature normal state only by a crossover. A quan-
tum vortex liquid might be a genuine phase at zero tempera-
ture which influences the finite temperature dynamics.'>'% A
few theoretical models can reliably describe strongly corre-
lated phases that can be characterized as vortex liquids and
they provide the best route to precisely define and character-
ize these phases.!4-1°

A new platform for addressing these interesting chal-
lenges in many-body physics has been recently introduced in
atomic physics.!” The ability to condense ultracold fermionic
atoms into a superfluid with controllable strength of interac-
tions and study them as virtually ideal and clean systems has
already mobilized an effort to simulate condensed-matter
systems. Static three-dimensional cold-atom systems near a
broad Feshbach resonance have striking universal
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properties'’2% which make them amenable to field theoreti-

cal analysis. This universality is controlled by a quantum
critical point at the zero density Feshbach resonance,'® which
defines the unitarity limit. The superfluid in this regime in-
terpolates between the Bardeen-Cooper-Schrieffer (BCS)
state of Cooper pairs and Bose-Einstein condensate (BEC) of
diatomic molecules, and insulating states in optical lattices
interpolate between the two analogous limits of band and
Mott insulators, respectively.?! The cold-atom superfluids
can be destabilized by fast rotation in the same way the elec-
tronic superconductor can be destabilized by magnetic
field.?>~2* Experimental progress toward observing this effect
in cold atoms is still limited, but the overall pace of devel-
opment in the field gives many reasons for optimism.>~?’

In this paper we analyze a simple two-dimensional model
of interacting fermionic particles which is a significant sim-
plification of electronic systems such as cuprates in magnetic
field, but can be routinely and accurately realized using ro-
tating ultracold atoms. The model contains paired superfluids
at low temperatures and a normal phase of uncorrelated fer-
mions at high temperatures. We concentrate on type-II super-
fluids which host an Abrikosov vortex lattice due to the ab-
sence of time reversal symmetry. The uncorrelated normal
phase is a thermally excited quantum Hall state of unpaired
fermions. A characteristic phase diagram of pairing instabil-
ity in this normal phase is shown in Fig. 1. One of our main
results is that the normal phase can stretch all the way to zero
temperature at finite particle densities for certain strengths of
interactions between fermions.

The pairing instability depicted in Fig. 1 was examined in
the past by several authors (for a review see Ref. 28 and
references therein). While three-dimensional systems at-
tracted most attention in the literature, the focus here is on
two dimensions precisely because of the previously missed
zero-temperature normal states (they are not expected to oc-
cur in three dimensions). In this paper we provide a fresh
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FIG. 1. Critical temperature of the superfluid-normal pairing
transition as a function of chemical potential. Interactions between
particles are characterized by the two-body scattering length a and
become weaker going from (a) to (d): #<—a~! (defined in the text
and Fig. 3) is 0.3 in (a), 0.4 in (b), 0.5 in (c), and 0.6 in (d). The
vertically stretching lines are normal-state constant density con-
tours, with increment 0.25B/(27), where B=2mw is the uniform
flux density.

approach to issues such as superconductivity in high mag-
netic fields and keep the formalism simple and clear in order
to focus on the most fundamental questions. This simplicity
will allow us to reach some fundamental conclusions which
were obscured in the past by the inability to go beyond the
mean-field and other approximations. We will not consider
Zeeman effect in this paper; Zeeman pair-breaking effects
can be completely eliminated in cold-atom systems, while in
electronic systems they are certainly important although the
superconducting state may be able to survive them even in
high magnetic fields (this analysis will be published sepa-
rately). Another popular approach in the literature has been
the Landau-Ginzburg theory, but for our purposes it is im-
portant to take into account the internal structure of the
bosonic degrees of freedom responsible for superfluidity and
capture phenomena characteristic for fermionic superfluids
that are absent in pure bosonic systems and Landau-
Ginzburg theories.

The possibility of finding a zero-temperature normal
phase of unpaired fermions, which is actually a quantum
Hall insulator, provides an opportunity to establish with
physical rigor the existence of another nonsuperfluid phase at
zero temperature. We show that the zero-temperature super-
fluid at a finite density must be destroyed by the quantum
fluctuations of the order parameter before the depairing in-
stability occurs. This vortex lattice melting quantum phase
transition is expected to be first order,”®-3! although propos-
als for a second order transition have also been made.?> The
resulting normal phase is strongly correlated as it retains
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FIG. 2. (Color online) A schematic phase diagram at zero tem-
perature. The depicted phases are fermionic quantum Hall insulator
(QHI), vortex liquid (VL), and superfluid with an Abrikosov vortex
lattice (SF). The vertical axis is a measure of the attractive interac-
tion strength between fermions. The horizontal axis is fermion
chemical potential expressed in reference to a Landau level (w, is
cyclotron frequency; the left and right edges of the diagram corre-
spond to two neighboring Landau levels). In the weak pairing limit
the superfluid can be destabilized between Landau levels, forming a
vortex liquid across a first-order phase transition. For very weak
pairing interactions a quantum Hall insulator of unpaired fermions
might become stable across a transition such as the one discussed in
Ref. 24. The particle densities in VL and QHI are expected to be
fixed and commensurate with respect to magnetic area. In this paper
we find integer QHI states shown in Fig. 1 and the corresponding
VL states around them. Other insulating states such as fractional
bosonic and fermionic quantum Hall states can be expected in vari-
ous circumstances.

Cooper pairs and it cannot be smoothly connected with the
quantum Hall state of unpaired fermions. Quantum phase
transitions between the two kinds of normal phases have
been studied recently.”* We will refer to the new normal
phase as vortex liquid, based on its sharp distinction from the
fermionic quantum Hall states. A schematic phase diagram is
shown in Fig. 2.

The concrete properties of a vortex liquid and its stability
at finite temperatures are not addressed in this paper. The
main reason is that these properties are not universal in ge-
neric realistic systems. To make this point we use a
renormalization-group analysis and show that all possible in-
teractions are relevant at the Gaussian fixed point in two
dimensions, regardless of their spatial dependence or the
number of colliding particles. The existence of infinitely
many relevant directions in the parameter space suggests the
possible existence of a large number of stable interacting
fixed points which determine the properties of phases. Which
of these phases is realized in a particular realistic system is
highly sensitive to the microscopic details of interactions be-
tween particles. One prominent candidate in the case of
short-range interactions is a quantum Hall liquid of incoher-
ent Cooper pairs.”* Other possibilities include a conventional
broken symmetry such as a density wave, in which case its
algebraically correlated analog could exist as a stable phase
at finite temperatures.

Since the ultracold fermionic atoms near unitarity are the
closest realization of the model considered here, we will de-
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vote extra attention to their specifics and express the results
in scales natural to cold atoms. However, the analysis is gen-
eral and possibly relevant to other strongly correlated sys-
tems such as cuprates.

This paper is organized into several sections. We begin by
defining the model of interest in Sec. II and setting up the
formalism for perturbation theory. In Sec. III we analyze the
phase diagram of the Cooper pairing transition in the pertur-
bation theory. The interpretation and limitations of the per-
turbative results are outlined in Sec. IV. In Sec. V we estab-
lish that vortex liquid phases, missed by the naive
perturbation theory, exist at zero temperature. At the end, we
apply a renormalization-group analysis in Sec. VI to appre-
ciate the nonuniversal properties of the vortex liquid states
and the richness of its possible physical realizations. We
summarize the results and discuss a possible experimental
approach in Sec. VIIL.

II. MODEL

Our starting point is a generic model of fermionic par-
ticles with attractive interactions in two dimensions. We
couple the particles to a U(1) gauge field which implements
a uniform flux density B,

VXA=ZB=mw.=2mo. (1)

In electronic materials flux is created by the external mag-
netic field B, while in ultracold-atom systems it originates in
rotation at angular velocity w (the relationship above follows
from dynamics in the rotating frame of reference). We will
not consider the fluctuations of A, so that the model will
naturally describe neutral particles (although Coulomb forces
can be implemented as direct interactions). The imaginary-
time action is

f 2{ L<a (-iV-A) )
S=|ddr| | —+————ult
or 2m
+ NOTI® + DTy, iy + Dy z,/;}] . (2)

The fermionic (Grassmann) fields i;, carry spin ae{7,|}
and a flavor index i=1...N which will be used to systemati-
cally generate perturbative expansions even when interac-
tions are strong. The physical case of interest is N=1. The
attractive interactions between particles are decoupled in the
particle-particle channel by the Hubbard-Stratonovich field
®. These interactions lead to processes in which two collid-
ing particles are annihilated and recreated at a different loca-
tion and different time, so that we can view ® as a mediating
Cooper pair field. No particular assumptions are made about
the nature or range of interactions at this point, so we leave

the bosonic kernel ﬂo unspecified until Sec. III.

It is worthwhile noting that in cold-atom systems the
gauge field A is rigid and cannot be expelled from a super-
fluid because it captures the inertial forces in the rotating
frame of reference. As a consequence, cold-atom superfluids
are automatically type II. In contrast, A is dynamical in elec-
tronic systems and the type of a superconductor is deter-
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mined by various parameters not contained in this model,
such as disorder.

The action is formally a generalization of the “two-
channel” model to the Sp(N) symmetry group. The purpose
of this generalization is to systematically organize a pertur-
bation theory with 1/N as a small parameter even when in-
teractions are not weak, as will be the case throughout the
paper. We first note that the full Cooper pair propagator is
proportional to 1/N. This follows from the Dyson equation
whose solution can be represented using Feynman diagrams

-1
] (3)

A double line represents Hol, while a single thick line is the
full fermion propagator (note that the summation over fer-
mion flavors in the bubble diagram contributes a factor of N).
The full vertex represented by a shaded dot and the full fer-
mion propagator are obtained by dressing the bare vertex and
propagator with full Cooper pair lines from the left-hand
side, and this generates contributions at higher orders in 1/N.
In general, any physical observable will formally be ex-
pressed as an expansion in powers of 1/N, justifying pertur-
bation theory for any interaction strength in the limit of large
N. This is a semiclassical expansion because for N=c0 all
pairing fluctuations are suppressed and saddle-point approxi-
mations become exact.

The uncorrelated Gaussian state to which the pairing in-
teractions are added as perturbations is an integer quantum
Hall state of fermions. This state is hard to imagine as a
ground state of any interacting system because of its macro-
scopically Landau-degenerate spectra. Nevertheless, it is a
good starting point at sufficiently high temperatures, and its
usefulness at zero temperature will become apparent in Sec.
V.

e

% [(:,.: )_1 +

The bare fermionic states are Landau orbitals with ener-
gies €, which we will represent in the Landau gauge

A = - Byx,

1 )
€, =wl\n+=]. 4
: ( : )
The quantum numbers are Landau-level index n
€{0,1,2...} and momentum k in x direction. The bare fer-
mion wave functions ¢, ; and the Cooper pair wave func-
tions @, , that will be used to expand the order parameter are

1 B\ ikx —B/2(y + k/B)> [ k
Yualr) ===\ —| T H,\VBy+—=|,
V2"l \ T VB

1 (2B\"*.
q)n’p(r) == ( —) elpxe—B(y + p/ZB)ZHn \"ﬁy + ’P% ’
\“’2 n! T \"23

()

where H, are Hermite polynomials. Note that @, , carries
twice the “charge” of fermions ¢, .
The elements of the perturbation theory in Landau repre-

sentation are summarized in Table I. The dimensionless ver-

np
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TABLE 1. Bare elements of the perturbation theory in Landau
representation. The vertex function I' is given by Eq. (6) and w,, is
Matsubara frequency.

Fermion
—iw,,+€,
Cooper pair 1,
k
Vertex (=)
I’ﬂl le \B

tex function in Landau representation is readily derived from
Eq. (5)
2—(n+ml+m2)/2 ( 2 ) 1/4
- =
Nan lmy ! my! \ T

2 - 2
Xe_g f dﬂe_zn Hn(VE’U)HmI(n"- g)Hmz(ﬂ_ g)

I, (6=

(6)

Note that the vertex does not depend on the momentum
transferred to the Cooper pair, but only on the difference of
incoming fermion momenta.

II1. PAIRING INSTABILITY

Consider bosonic two-particle excitations in the normal
phase. Their dynamics is captured by the Cooper pair propa-

gator ﬁ:(Nﬂ)‘l. In general, we need to view this propagator
as an operator or a matrix whose rows and columns are in-
dexed by the quantum numbers of Cooper pairs in some
representation. We do not know a priori which representa-

tion diagonalizes I1, but the Landau representation is a con-
venient one to work with. Since pairing instability occurs at
zero frequency, the easiest way to detect it is by the onset of
negative eigenvalues of II at zero Matsubara frequency. This

follows from the fact that upon integrating out the fermion
fields in Eq. (2) the effective Cooper pair action has the

quadratic term ®'TId which needs to be positive for any
vector @ if the perturbation theory about the normal state
(®=0) were to be stable.
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Before embarking on the calculation of I1 we must note
that it is not gauge invariant. Gauge transformations in posi-
tion representation that leave the action invariant are

A(r) — A(r) + VA(r),
Uia(r) = ()™,
D(r) — D(r)e™ ),

H(rl’rZ) - H(rl,rz)ei[m\(ﬁ)—h(rz)]_ (7)

Gauge transformations are manifestly unitary transforma-

tions of IT and do not affect its spectrum of eigenvalues.
Therefore, the spectrum which contains all information about
bosonic dynamics is gauge invariant and the calculations can
safely proceed in any gauge choice. Note that if the gauge
field were dynamic one would not be able to apply the stan-
dard perturbation theory in powers of charge because the
gauge transformations would appear nonperturbative. That
problem is absent in our approach.

The Cooper pair kernel I1 can be viewed as a sum of two

parts according to Eq. (3). The first part is the bare kernel f[o
which contains information about the microscopic details of
the attractive interactions between fermions. The second part
is the fermion bubble diagram which can be derived as an
expansion in 1/N,

dk f(&n) = f(= €5,

27 —iQ+eg, [+ Em,

nn/(p7lQ) - \B 2 f

my,my

we [k N [ K 1
Fmvmz(\»—g)%mz(@) *0(13)' ®)

Note that this expression for I1’ written in the Landau rep-
resentation is diagonal in p but not in the bosonic Landau-
level indices n. The lowest-order term, explicitly written here
with the internal Matsubara frequency summed up, contains
only the bare fermion propagators and no vertex corrections.

As we will discuss in Sec. VI, different microscopic de-
tails of attractive interactions between fermions can in prin-
ciple lead to different properties of the system. Without being
able to classify all possible cases we still have to choose a
particular form of interactions in order to carry out calcula-
tions. The simplest choice is to model short-range interac-
tions by a zero-range potential. The Hubbard-Stratonovich

decoupling of such attractive interactions produces ﬂo
=const.,

eXp{ dedzrw )y (r)lﬁ,l(r)lﬂﬂ(r)} fD¢’ eXp{—Jdez [—|¢(r)|2+qﬂ(r)lﬂn(r)llm(r)+<1>(r) (), (r)”

)
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In three dimensions and zero flux density the constant f[o
=V~ is related to the scattering length of two body collisions
in vacuum f[0=mv/4w, where a=-1/v is the scattering
length. In the context of cold-atom experiments, v is the
detuning from the Feshbach resonance. For v=0 the scatter-
ing length diverges and the system acquires universal prop-
erties, which is the so-called unitarity regime where micro-
scopic details of interactions do not matter and the simple
interaction potential above is sufficient for making various
quantitative predictions. In two dimensions we must redefine

the detuning in order for f[o to have proper engineering di-
mensions: we replace v by v=wva,, where q, is a confinement
length scale or “width” of the potential well in z direction
which effectively reduces the system to two dimensions.

While establishing these connections with cold-atom sys-
tems is useful, one should be aware of the conceptual prob-
lems in the presence of finite flux density. Strictly speaking,
scattering length a is a quantity that describes interactions
between extended free particles, but in our case particles are
localized in Landau orbitals. Only for a<<R_, the cyclotron
radius at Fermi energy, a retains its physical meaning. There-
fore, it is most appropriate to regard v=—1/a just as a mea-
sure of the strength of interactions: positive values being the
BCS limit and negative values being the BEC limit. Inter-
preting v=0 as a Feshbach resonance in cold-atom systems
and ascribing universal properties to it is problematic, and
the discussion in Sec. VI will shed more light on this.

In fact, the relationship between f[o and scattering length
is established only after the regularization of the infrared and

ultraviolet behaviors of I1. In three dimensions and without

the external flux the IT given by the expression analogous to
Eq. (8) is known to be ultraviolet divergent. Once this field-
theoretical artifact is removed by regularization, the leftover

contribution to I is precisely mv/4 .1 In two dimensions I1
becomes infrared divergent as well if the bare fermion spec-
trum is gapless. In our case the spectrum is gapped due to
Landau-level quantization, but more generally any two-
dimensional system should be viewed as a three-dimensional
system constrained by a potential well in which the lowest
energy band is raised above the bottom of the well. There-
fore, infrared divergence is not a real concern. The ultraviolet
behavior is, however, very different from the zero flux case
because the flux modifies the spectrum at arbitrarily high
energies. On physical grounds we perform regularization by

subtracting from Eq. (8) the same expression I1'(0) evalu-
ated at zero Matsubara frequency and momentum transfer, as
well as zero temperature and chemical potential, but finite
flux density. This takes care of any possible ultraviolet diver-
gences and is compensated by adding mv/4m which in the

limit of small scattering length is precisely given by f[’(O).
The final expression for the Cooper pair kernel that we shall
use is

<N

m

N Al A 1
H=—+H’—H’(O)+(’)(—>. (10)
4 N

Figure 3 shows pairing second-order phase transitions in
the limit N— o obtained from the onset of negative eigen-
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values of Eq. (10). The numerical calculation of Eq. (8) in-
volves the first 500 fermionic Landau levels below the cutoff
and the lowest bosonic Landau level, although the phase dia-
gram remains the same if higher bosonic Landau levels n,n’
are included. The deeper one goes into the BEC regime, the
faster the growth of critical temperature with chemical po-
tential (density). In the BCS regime, however, the paired
phase breaks up into dome-shaped islands at low densities,
obtained when chemical potential gets close to a fermionic
Landau level. Once a paired state becomes a connected re-
gion at sufficiently large densities, there are trailing islands
of unpaired states sitting between the Landau levels. These
details are shown with more clarity in Fig. 1. Related phe-
nomena have been considered in literature, but the zero-
temperature normal states were not anticipated.?®

Integer quantum Hall states are obtained by putting the
chemical potential u between Landau levels. Pairing interac-
tions compete with the cyclotron gap w.=2w and must be
strong enough in comparison to the smallest single-particle
gap min{|u—w (n+ %) ,n € Z} in order to give rise to Cooper
pairing. This means that if pairing is not too strong, insulat-
ing states can exist at zero temperature with fully populated
Landau levels below the chemical potential. The analysis
based on pairing instability in the perturbation theory is,
however, not complete. In Secs. IV and V we discuss what
has been missed.

IV. LIMITATIONS OF THE PERTURBATION THEORY

The perturbation theory seemingly discovers Cooper pair-
ing instability for any finite N when the chemical potential is
brought sufficiently close to a Landau level. To cure this
instability one usually redefines the ground state by introduc-
ing an order parameter and then rebuilds the perturbation
theory about the new ground state. The order parameter
which describes a superfluid with broken U(1) symmetry and
an Abrikosov lattice of vortices can be written as a superpo-
sition of Landau-level wave functions in Eq. (5)

d
q)()(r) = E J ﬁ(ﬁn,pq)n,p(r)' (1 1)

Hence, the order parameter is specified by multiple ampli-
tudes ¢, ,. If we substitute ®(r)=Dy(r)+5P(r) in Eq. (2)
and integrate out the fluctuating fields ¢ and 6® we can
obtain the perturbative 1/N expansion for free-energy den-
sity of the ansatz state characterized by @,

FPo) Fo o i A g 6
T = F + HU(I)O (I)O + Uijkl(I)O (I){) (I)OCI)() + O((I) )

(12)

The quantum numbers (n,p) are represented by indices

i,j,... for brevity and all couplings I1,0,... are functions of
u,T,w,... which have tensor structure and contributions to
all powers of 1/N. Note that the expansion is analytic at
®,=0 because the unperturbed state at ®y=0 is a fully
gapped incompressible quantum Hall state of unpaired fer-
mions. In the normal state F is minimized at ®,=0, while in
the superfluid the minimum is at ®y+ 0.
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FIG. 3. (Color online) Critical temperature for the onset of Coo-
per pairing as a function of chemical potential for several values of
dimensionless detuning ¥=wa,: the outermost curve is BEC limit
v=-0.9, the innermost is BCS limit 7=+0.9, and unitarity v=0 is
dashed (Ap=0.1). The vertically stretching lines are normal-state
constant density contours, with increment 0.25B/(2).

At the lowest order or the mean-field level we found both
superfluid and normal states in Sec. III. If we include higher
order corrections the order parameter in a superfluid state
will be reduced and the normal areas in the phase diagram
will grow. However, superfluid states will survive at all or-
ders of perturbation theory for any finite N if the chemical
potential is sufficiently close to a Landau level. This is ulti-
mately a consequence of the cyclotron gap in the fermion
spectrum which prevents the occurrence of nonanalytic in-
frared features and yields finite corrections to all couplings in
Eq. (12) at all orders of 1/N. Alternatively, any point in the
phase diagram which is a superfluid in the mean-field ap-
proximation will remain superfluid for sufficiently large N
despite fluctuations.

Throughout this paper we exploit the computational and
analytical conveniences of the physical picture embodied in
Eq. (12). However, we must be aware of its limitations. This
picture naively suggests two kinds of broken symmetries in
the superfluid phase: the “off-diagonal” long-range order and
space-group symmetry breaking due to the vortex lattice.
Even at finite temperatures it suggests the existence of these
broken symmetries. On the other hand, it is well known that
fluctuations in two-dimensional systems can restore continu-
ous symmetries in the equilibrium states. In particular, the
superfluid phase at zero temperature has a long-range or-
dered vortex lattice, but shear fluctuations of vortex positions
reduce the off-diagonal order to algebraic correlations and
hence restore the U(1) symmetry.’33% At finite temperatures
even the vortex lattice must be melted according to Mermin-
Wagner theorem, but algebraic correlations of vortex posi-
tions are allowed and Kosterlitz-Thouless transitions can
separate the quasi-long-range ordered vortex “lattice” phases
from disordered phases with only short-range correlations.

The naive approach behind the Eq. (12) assumes that the
only two kinds of states one need to worry about are the
normal state with short-range correlations of the order pa-
rameter and the superfluid with long-range correlations. It
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does not explore the free-energy density F' of states with
algebraic correlations of the order parameter(s). It turns out
that in the circumstances mentioned above F' < F(®,) for
any attempted order parameter @ inside the naively pre-
dicted superfluid regions. Another possibility is that F’
< F(0) inside some parts of the naively predicted normal
states.

Calculating F' is highly nontrivial in the perturbation
theory. Therefore, we are better off learning what we can
from F(d,) in Eq. (12). The difference A=F(P,)-F" de-
fines an energy scale associated with the error made by Eq.
(12). We will be able to make conclusions only about phe-
nomena characterized by energies larger than A or length-
scales smaller than 8 A~!'. This will be sufficient for estab-
lishing the existence of zero-temperature vortex liquid
phases in Sec. V. On general grounds we can expect that the
error A is small because even in the absence of a true long-
range order the scale given by ®, plays a role in various
properties of the system.

V. VORTEX LIQUID

The quantum Hall insulator of unpaired fermions is a very
peculiar unperturbed state for building the perturbation
theory. A very important property of the exact Cooper pair

propagator D=(NII)™! in this state is that its spectrum is
macroscopically degenerate and corresponds to bosonic
Landau-level degeneracy. A simple argument is that in the
absence of any emerging parameters that could characterize

the equilibrium state the propagator D obtains its matrix
structure from the only single-particle operator available in
the theory (2), the canonical momentum P=-iV-A. This
operator has a degenerate spectrum that gives rise to Landau-

level degeneracy, hence the operator D(P) must also have a
degenerate spectrum, assuming of course that the functional
dependence on P is analytic. A detailed demonstration of this
fact follows from perturbation theory to all orders and agrees
with a general expectation that the perturbation theory de-
scribes a state smoothly connected to the state of noninter-
acting particles in the absence of instabilities. It is important
to note here that Cooper pairs are “charged” with respect to
the gauge field; “charge-neutral” particle-hole excitations are
exempt from the Landau-level quantization.

The perturbative argument goes like this. We can establish
that Eq. (8) and hence Eq. (10) are independent of p to all
orders of 1/N. First, the written lowest-order term in the 1/N
expansion involves fermion energies that do not depend on
*+k+p/2 and vertices (6) that do not depend on p. This term
defines the bare boson propagator Dy N~!, using which we
generate higher order corrections of Eq. (8). Let us apply the
following labeling rules in all Feynman diagrams that con-
tribute to Eq. (10): each fermion propagator shall carry mo-
mentum k+p/2 in the arrow direction, while each boson
propagator shall carry g+p (see Fig. 4). The transfer of p is
automatically conserved. Each added vertex takes momenta
ki+p/2 and ky+p/2 at its fermionic terminals, but there is
no dependence on p since only the difference of momenta at
the fermion terminals matters in Eq. (6). The added bare
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FIG. 4. Feynman diagram labeling examples.

boson lines take p contributions, but according to Eq. (8)
they do not depend on the transferred momentum. Therefore,
order by order, no dependence on p is introduced in any
Feynman diagram.

Changing the nature of interactions does not modify this

conclusion because f[o must be gauge invariant in the pres-
ence of the external uniform flux density. Even interactions
in the particle-hole channel cannot lift the degeneracy of
bosonic modes (an equivalent “degeneracy theorem” can be
proved to all perturbative orders in a Landau-Ginzburg
theory of interacting particles in magnetic field). Therefore,
the gapped two-particle bosonic modes are macroscopically
degenerate in the trivial insulating state regardless of the type
of interactions between particles. Naturally, it is hard to be-
lieve that any quantum fluctuations would not lift this degen-
eracy. At no surprise we shall demonstrate that the degen-
eracy must be lifted at least close to the superfluid transition,
but the main point for now is that it takes spontaneous reor-
ganization of the ground state to lift the degeneracy (which
in some sense is a trivial but very important observation).
Even without knowing whether the obtained normal 7=0
state has some conventional order or topological order, it is
certain that it cannot be smoothly connected with the ordi-
nary insulating state.

First, we need to understand the properties of the zero-
temperature superfluid phase. Let us start from a quantum
Hall insulator at zero temperature. When the energy of the
lowest degenerate bosonic states in the insulator becomes
negative in response to the chemical potential approaching a
Landau level, then Cooper pairs condense into those states.
The resulting order that minimizes free-energy density is au-
tomatically an Abrikosov vortex lattice residing initially just
in the lowest bosonic Landau level. The free-energy cost of
rearranging vortices without changing the vortex density is
exceptionally small near the phase transition. By assumption
we are dealing with type-1I superfluids so that the pairing
phase transition is second order. But, even more striking is
the effect of bosonic degeneracy in the trivial insulating
phase.
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Consider the free-energy density as a function of order
parameter in Eq. (12). We argued that the quadratic coupling

I is macroscopically degenerate. Therefore, different vortex
lattice arrangements, specified by different order parameters
®,, will differ in free energy only as O(®P]) close to the
phase transition. We conclude that the potential-energy den-
sity of a vortex lattice depends on the order parameter near
the transition as

Epo ~ Py (13)

Quantum fluctuations of the order parameter dynamically
distort the vortex lattice. Their microscopic origins are the
short-range repulsive interactions between Cooper pairs
which are caused at least by the Pauli exclusion of their
fermionic constituents. Interactions between bare fermions
also affect the quantum fluctuations in a manner that can be
very sensitive to microscopic details of the interaction poten-
tial. In fact, all possible two-body and multiparticle interac-
tions are relevant at the Gaussian fixed point in the
renormalization-group sense, regardless of their spatial de-
pendence (see Sec. VI). Having infinitely many relevant di-
rections in the parameter space suggests that there could be
many interacting stable fixed points that describe numerous
possible correlated phases. Systematically analyzing all pos-
sibilities seems hopeless. Therefore, we shall not attempt to
identify the properties of strongly correlated normal phases
that can be obtained after the superfluid is destroyed by
quantum fluctuations. Instead, we can at least prove that
some strongly correlated normal phases must inherit the su-
perfluid, rather than the trivial unpaired quantum Hall insu-
lator. This is already one statement about the
renormalization-group flow of parameters near the superfluid
quantum phase transition.

In order to summarize the effects of quantum fluctuations
we can view them as quantum motion of vortices. In this
picture, vortex lattice melting destroys the superfluid. It will
suffice to estimate the effective vortex mass M, specifically
its dependence on the order parameter ®,. We make the es-
timate using the Heissenberg uncertainty relation. Vortices
are localized in a vortex lattice at the scales of magnetic
length [,,=1/Vmw, which measures the average distance be-
tween vortices and corresponds to a momentum scale p,,
~ ymaw,. If vortices were allowed to move freely they could
convert the potential energy of localization in the lattice to
kinetic energy of the order of pi/ZMU per vortex. Since vor-
tex density is topologically fixed by the constant rotation rate
or magnetic field, we find

Eyin~ M, (D). (14)

In typical fermionic superfluids one is usually mostly con-
cerned with the quasiparticle contribution to vortex mass. In
s-wave superfluids vortex cores can localize quasiparticles,
so that M, is at least of the order of the total mass of trapped
core fermions. An upper bound for M, can be found by view-
ing a vortex core as a potential well of depth |®| in the units
of energy and radius comparable to the Cooper pair coher-
ence length £~ |®|~!. Assuming roughly a constant density
of core states appropriate for two-dimensional nonrelativistic
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quasiparticles, the total number of core states is proportional
to @/, so that M, =<|®|. This estimate is best suited for the
strong BCS 1imit.’¢ As the strength of interactions is in-
creased, the coherence length decreases, quasiparticles are
gradually being expelled from vortex cores and M, is being
reduced. There is also a contribution of extended quasiparti-
cles to vortex mass. In s-wave superfluids this contribution is
thermally activated, but in d-wave superfluid it gives rise to a
vortex mass of the order of a fermion mass.’’

Close to the superfluid transition it turns out that the “hy-
drodynamic” vortex mass due to the phase fluctuations of the
order parameter dominates in M, (for any finite N). This
contribution can be generally estimated as M, ~ €,/ c?, where
€, is energy of a static vortex and c is the speed of sound or
the superfluid critical velocity.”” For a neutral superfluid
with stiffness p, in the units of energy, ¢~ Vp,/m while €,
o« p, log(l,,/ €) diverges logarithmically with the separation [,
between vortices. The logarithmic behavior comes from the
contribution of the circulating supercurrent phase gradients
that extend beyond the vortex core of radius ¢ freely up to
the distance to the neighboring vortices (we assumed that the
London penetration length is larger than the magnetic length
1,). Using p,~|®,|* we find that the hydrodynamic contri-
bution to the vortex mass behaves as M, ~log|®,| near the
phase transition for a fixed flux density. In charged superflu-
ids the logarithmic factor is screened out,’’*" so that the
vortex mass approaches a constant as |®,|— 0. Therefore,
the vortex kinetic energy density is

[log|®||™", neutral superfluid
Eyin~ . (19)
const., superconductor

Regardless of the concrete microscopic details and factors
that enter Egs. (13) and (15), close enough to the pairing
transition the kinetic energy wins and vortex lattice must
melt. The quantum melting occurs at a finite |®,| below
which Eyj, > E, before the depairing transition is reached.
Both the kinetic and potential energies of vortices can be
calculated in the perturbation theory and the melting transi-
tion is expected to be first order according to the Landau-
Ginzburg theory of phase transitions. The resulting normal
state can be regarded a strongly correlated vortex liquid in
which Cooper pairs remain the most important low energy
degrees of freedom. The energy released into the motion of
vortices in the vortex liquid is not sufficient to overcome the
pairing gap |®,| in the fermion spectrum.

By comparing the spectrum of bosonic excitations in this
vortex liquid and the trivial quantum Hall insulator one eas-
ily concludes that the two normal phases cannot be smoothly
connected. The bosonic modes in the superfluid state close to
the pairing transition are nearly degenerate, so that many
different vortex arrangements have very similar free-energy
densities. In the trivial quantum Hall insulator all of these
modes become gapped and collapse to the same bosonic
Landau level, leaving the occupied fermionic Landau levels
to define the ground state. On the other hand, vortex liquid is
obtained by mixing the nearly degenerate bosonic modes in-
side the superfluid, while they still have negative energies
that encourage condensation. The mixing perturbation pro-
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duces a new ground state (with lower energy than the super-
fluid) as a quantum superposition of many different vortex
arrangements and pushes away from it the other collective
modes toward higher energies. The resulting low energy
spectrum is qualitatively different than that of the trivial
quantum Hall insulator because the ground state is still a
collective state of correlated bosons at some negative energy
where condensation is prevented only due to strong quantum
fluctuations.

We cannot predict the properties of the vortex liquid and
they are not universal. However, the perturbation theory re-
quires that a vortex liquid be adjacent to any type-II super-
fluid phase of a two-dimensional quantum fermionic system
at zero temperature with explicitly broken time reversal sym-
metry. How should this be interpreted in the light of the fact
that the naive perturbation theory does not correctly describe
the lowest energy scales? Even though quantum fluctuations
destroy the superfluid long-range order, they leave behind the
broken symmetries due to the vortex lattice. The vortex lat-
tice potential energy Eq. (13) is shaped by quasiparticle and
Cooper pair mediated forces between vortices, which in turn
are well defined at sufficiently short length scales to be cap-
tured by the naive perturbation theory. Specifically, close to
the pairing transition when the error length scale é becomes
large in comparison to the separation /,, between vortices the
naive estimate Eq. (13) can be trusted. Similarly, vortex mass
is always dominated by the “high energy” degrees of free-
dom below the ultraviolet cutoff associated with the finite
vortex core size or the superconducting “gap.” Vortex is a
local deformation of superfluid phases so that its dynamics
can be reliably captured by the naive perturbation theory.
Therefore, we can trust the estimate (15) as well and estab-
lish the existence of a vortex liquid at zero temperature.

VI. RENORMALIZATION-GROUP ANALYSIS

The purpose of the following discussion is to elucidate the
issues behind attempts to apply the simple theory (2) to the
analysis of realistic systems. A usual theoretical strategy is to
justify a tractable field theory in the vicinity of second-order
phase transitions where most operators allowed by symme-
tries do not significantly affect the macroscopically observ-
able properties of the system. The fact that only a few op-
erators are important to keep in calculations is what makes a
field theory quantitatively useful. The model (2) does not
have this useful property.

We demonstrate using renormalization group (RG) that all
arbitrary-range interactions between fermions are perturba-
tions to Eq. (2) that can shape phases and induce transitions.
Physically, this comes from the fact that the bare fermion
spectrum in Eq. (2) consists of dispersionless macroscopi-
cally degenerate Landau levels with energies €,=nw.—u’
(here we measure energy with respect to the redefined
chemical potential u'=p—w,/2). The lack of dispersion re-
duces dimensionality in RG and makes even arbitrarily weak
perturbations extremely potent in lifting the degeneracy. We
set up RG by generalizing Eq. (2) to d dimensions in the
Landau-level basis using the Landau gauge and include ad-
ditional allowed terms
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We suppress spin « and flavor 7 indices for brevity. Since the
bare fermion states are localized in the plane perpendicular
to the axis of rotation, it is appropriate to not rescale k, in
RG. At zero temperature and density, fermion self-energy
vanishes so that all renormalizations come from the boson
field ®. The RG flow equations can be calculated exactly to
all orders of perturbation theory when u, and the remaining
omitted couplings are zero, since then the renormalization of
@ involves summation of a geometric series of bare fermion
bubble diagrams. Following the procedure in Ref. 19, we
find that under rescaling

ri=elr, 7 =en,

l,[/, — e(d/z—l)ll// o’ =e(d/2—1)lq) (17)
the exact flow equations are
d_'u’, =2u’ do,
a - oa T

vy, 98 ( 4) s

=Q2-ag’)v U 3 58 bNg, (18)
where a and b are cutoff dependent constants whose values
are not important for the present discussion. Apart from the
Gaussian fixed point at u' =w.=v=g=0, we can identify an
interacting fixed point at u'=w,=v=0, g*=\(3-d/2)/(bN)
which defines the unitarity limit in any dimension d and
shows how perturbation theory can be justified for large N.
In addition to @', w,, and v, various couplings u,,, which may
include nonlocal short-range potentials and hence multipar-
ticle collision terms, can be relevant at this fixed point. For
n-particle scattering u,, we find sufficient indication at the
tree-level

du,
=[d+
dl

(2 —d)nlu, + O(u?) (19)

irrespective of the spatial dependence of interaction poten-
tials in the plane perpendicular to rotation axis, since coor-
dinates do not rescale in this plane. Therefore, all u, are
relevant in d=2, while in d>2 they are relevant for n
<d/(d-2).

The same conclusions have been reached in the past using
€=6-d expansions in the context of classical Landau-
Ginzburg theories.”” A formal advantage of the present ap-
proach is that the conclusions are justified in any number of

A T ...
my ..m4(kxl ’kx2’ qx) l/lml'kxl mz,kxz¢m3,kx2+qx(/lm4,kxl—qx + . (16)

dimensions as long as N is large, but also for not so large N
as long as the u, couplings are small and the density of
particles is close to zero.

The existence of infinitely many relevant directions in the
parameter space near the Gaussian and unitarity fixed points
implies the possibility that there could be many stable inter-
acting fixed points that specify the properties of many differ-
ent phases. The microscopic details of interactions between
particles can then very sensitively determine the concrete
properties of a concrete system at low temperatures. We ex-
pect that the properties of the vortex liquid in particular are
not universal. The vortex lattice melting transition lines are
also not universal, being first order. The superfluid phase is
generally amenable to phenomenological descriptions re-
gardless of the microscopic details, but we can expect that
the structure of vortex cores is system dependent.

VII. CONCLUSIONS

We analyzed a simple model of neutral fermionic particles
in two dimensions with attractive interactions and explicitly
broken time reversal symmetry. The model is routinely real-
ized in ultracold-atom experiments with fermionic atoms
near a broad two-body Feshbach resonance, but it also cap-
tures some essential properties of much more complicated
electronic systems. We assumed that the low-temperature su-
perfluid is type II so that it hosts an Abrikosov lattice of
vortices at a fixed flux density. Using a semiclassical pertur-
bative expansion we found that a second-order phase transi-
tion separates the superfluid from a normal phase of ther-
mally excited unpaired fermions in the quantum Hall regime.
We calculated the critical temperature as a function of inter-
action strength and density and showed that in some circum-
stances for weak interactions this phase transition can occur
even at zero temperature.

The unusual properties of the quantum Hall insulator at
zero temperature were then exploited to argue that the
second-order superfluid-insulator transition obtained in the
naive perturbation theory must be preempted by a first-order
transition due to quantum vortex lattice melting. This con-
clusion followed from the analysis of quantum fluctuations
related to vortex dynamics. We compared the potential en-
ergy of a vortex lattice to the kinetic energy of a vortex
liquid and showed that the latter always wins on the super-
fluid side close enough to the pairing transition. The vortex
liquid is a strongly correlated normal phase which cannot be
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smoothly connected with the quantum Hall state of unpaired
fermions.

Finally, we argued that the properties of a vortex liquid in
two dimensions at a finite flux density are not universal.
Different materials can exhibit different normal states result-
ing from vortex lattice quantum melting, including states
with topological order such as quantum Hall states of Cooper
pairs or states with broken symmetries involving density
waves for example. At zero temperature we expect that such
states are insulators. At finite temperatures, below a cross-
over temperature, the normal states will be at least influenced
by the proximate nontrivial zero-temperature phases, but we
cannot rule out the existence of genuine finite temperature
vortex liquids (depending on the broken symmetries of the
zero-temperature insulator) which are separated from the dis-
ordered normal phase by a Kosterlitz-Thouless transition.

Ultracold-atom experiments have the potential to directly
explore the phenomena discussed in this paper. The target
regime would be a combination of fast rotation and low par-
ticle density where a few lowest Landau levels would be
occupied in the quantum Hall state at low temperatures. It is
in this limit and on the BCS side of the Feshbach resonance
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where multiple isolated superfluid phases could be found
separated by normal states as the density of particles or ro-
tation rate is varied. In order to faithfully represent our
model the experiment would need to achieve this limit with a
trap whose harmonic frequency is not much higher than the
rotation rate. The phenomena predicted here might survive
even in more confining traps, but the structure of vortex lat-
tices and hence the phase boundaries would be affected by
the trap in a manner that we cannot predict with a uniform
model. Observing Cooper pairs at low temperatures in the
normal states would be a first weak indicator of the proxim-
ity to a vortex liquid.
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